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Carrer Dr. Moliner 50, E-46100 Burjassot (València), Spain
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1. Introduction

The most plausible candidate for a quintessence explanation of dark energy is a pseudo-

Nambu-Goldstone boson (PNGB) of a spontaneously and explicitly broken global U(1)

symmetry [1][2]. Denoting the scale of the explicit breaking by M and the scale of the

spontaneous breaking by f , the effective mass of the PNGB is meff ∼M2/f . The required

value of this mass for a successful quintessence model is of order the Hubble parameter

H0 ∼ 10−33 eV; this can be obtained naturally if the spontaneous breaking scale f is

very large, roughly comparable to the Planck scale MPlanck ≃ 1019 GeV. Because of the

symmetry, the PNGB has only derivative couplings to matter and radiation, plus couplings

whose dimensionless strength is suppressed by powers of M/f ∼ 10−22. This evades a

number of strong experimental and observational constraints on weakly-coupled ultralight

scalars [3].

In a more general class of PNGB quintessence models, the effective mass of the PNGB

will vary over time, i.e. it will be a function of the scale factor a obtained by solving the

coupled cosmological equations of motion. Since f is comparable to the Planck scale, it

is possible that meff was much larger at early times, without losing the key property that

meff/f ≪ 1. This raises the possibility that the quintessence PNGB field may also have

been responsible for primordial inflation, albeit in some modification of the usual scenario.

A simple avenue towards quintessential inflation is then to assume that meff and the

PNGB scalar potential V scale (at least roughly) like some power of the Hubble rate H.

Any model with meff ∼ H has the additional virtue of removing the coincidence problem,

i.e. the fact that the ratio of scales M/f is of order H0 is no longer a coincidence, but

rather has some dynamical origin.
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Any model of quintessential inflation must explain why the energy density of the uni-

verse was dominated by radiation at the time of Big Bang Nucleosynthesis (BBN), even

though the inflaton dominates the energy density now and dominated it in a primordial

epoch as well. For a PNGB, the simplest explanation is that the PNGB decays to matter

and radiation via derivative couplings of the form

λij
f

MPlanck
gµν∂µθ ψ̄iγνψj , (1.1)

where θ denotes the PNGB field rescaled by f to make it dimensionless, and the λij are

moderately small dimensionless couplings. For f ∼ MPlanck, this will allow large entropy

production from PNGB decays. Since the PNGB potential varies over time, the equation

of state of the PNGB also varies. Thus it is natural to have periods of inflation interspersed

with periods of radiation dominance.

The matter coupling (1.1) was introduced by Cohen and Kaplan in their thermody-

namic model for baryogenesis [4]. In their scenario B or L violating processes occur via

dimension six four-fermion operators suppressed by a relatively low scale Λ ∼ 108 GeV.

Combined with a PNGB possessing dimension five couplings like (1.1), they generate a

baryon asymmetry in thermal equilibrium (at temperatures >∼ 108 GeV), and a further

asymmetry at lower temperatures from PNGB decays.

In this paper we construct a natural model of PNGB quintessential inflation that also

implements the Cohen-Kaplan mechanism for baryogenesis. At the same time that we

provide quintessence and inflation, our model gives a simpler explanation of the baryon

asymmetry than the original scenario of [4]. We are able to assume that the scale for

the dimension six B, L violating operators is of order 1015 GeV, or of order 1011 GeV

for purely L violating operators. Thus we are slightly above or saturating the current

experimental bounds from proton decay [5]. Our cosmological evolution begins with generic

initial conditions, unlike the original models of [1][2], at an initial temperature T0 ∼ 1017

GeV, which is comfortably less than f ∼MPlanck. Our model requires no unnatural tunings

other than that of the cosmological constant, a tuning that is unavoidable since quintessence

does not solve the cosmological constant problem.

2. FRW cosmology driven by a Nambu-Goldstone boson

Consider a theory with a U(1) global symmetry under which some complex scalar field

Φ(x, t) transforms as

Φ → eiα Φ , (2.1)

where α is a constant. Other fields, including fermions, may also transform nontrivially;

in particular the symmetry may be a chiral symmetry. We imagine that this symmetry

is spontaneously broken at some high scale, near MPlanck, determined by the vev f of the

scalar. Expanding around this vev gives

Φ = (f + σ(x, t)) eiθ(x,t) , (2.2)
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where σ is a real scalar and θ is another real scalar which has been rescaled by 1/f to be

dimensionless. The effective theory at lower energies has the original symmetry nonlinearly

realized, with the Nambu-Goldstone boson (NGB) θ undergoing a shift:

θ(x, t) → θ(x, t) + α . (2.3)

Obviously the NGB only has derivative couplings in this effective theory. Higher dimension

operators are suppressed by powers of a high scale f which we are roughly equating to

MPlanck. To leading order in f the NGB action is just

∫

d4x
√
−g 1

2
f2 gµν∂µθ∂νθ . (2.4)

Let us further suppose that the energy density of the universe during some epoch is domi-

nated by the NGB. Then the Friedmann equation is approximately

H2 =
f2

3k2
θ̇2 , (2.5)

where k2 = M2
Planck/4π. The equation of motion for θ (again to leading order in f) is just

θ̈ + 3Hθ̇ = 0 , (2.6)

while the continuity equation is given by

ρ̇θ = −6Hρθ . (2.7)

The cosmological solutions for the spatially averaged vacuum expectation value of θ(t)

depend upon the initial conditions. If we assume that θ̇ is initially zero, with θ taking an

arbitrary initial value, then the solution to (2.5)-(2.7) is a static universe. If instead we

assume that both θ̇ and θ have arbitrary initial values, we get an expansion dominated

(initially) by kination:

θ(t) = −ln a(t) , H =
1

3t
, a(t) = t1/3 , (2.8)

where we have taken f =
√

3k to simplify notation. Of course in this solution ρθ dilutes like

1/a6, as appropriate for kination, i.e., an equation of state dominated by kinetic energy.

Derivative couplings of θ to ordinary matter will allow the θ vacuum energy to be converted

to a thermal radiation bath via decays. Since ordinary matter and radiation dilute like

1/a3 and 1/a4, they will eventually dominate the expansion.

Let us interpret this solution in terms of the original global symmetry. The equation

of motion for θ is just the statement that the global current is covariantly conserved; the

corresponding conserved global charge of the vacuum Q is proportional to a3θ̇, which from

(2.8) is indeed seen to be a constant. Once we include matter couplings the vacuum charge

Q is no longer constant, but the total global charge including matter contributions is.
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3. FRW cosmology driven by a pseudo-Nambu-Goldstone boson

We can modify the discussion in the previous section by introducing a nonvanishing po-

tential for the θ field and a noncanonical kinetic function:
∫

d4x
√
−g

[

1

2
F (cos θ) gµν∂µθ∂νθ − V (cos θ)

]

. (3.1)

F and V explicitly break the global U(1) symmetry down to a discrete periodic remnant:

θ → θ + 2πN , (3.2)

where N is any integer. This kind of explicit breaking would arise if terms proportional to

powers of Φ + Φ∗ were present in the original action. Alternatively, there could be Yukawa

couplings or derivative couplings of Φ to fermions:

λijΦ ψ̄iψj , λ′ijg
µν∂µΦ ψ̄iγνψj (3.3)

In this case chiral symmetry breaking will induce, at the loop level, an effective action of

the form (3.1). The simplest possibility, considered in [1, 2], gives
∫

d4x
√
−g

[

1

2
f2 gµν∂µθ∂νθ −M4(1 − cos θ)

]

, (3.4)

where M is some chiral symmetry breaking scale much smaller than f .

Because of this explicit breaking, θ is now a pseudo-Nambu-Goldstone boson, with a

mass of order M2/f . It is technically natural for this mass to be small, since it vanishes

in a symmetry limit.

Now consider FRW cosmology driven by such a PNGB. The PNGB equation of motion

is:

θ̈ + 3Hθ̇ +
M4

f2
sin θ = 0 . (3.5)

The cosmological solutions again depend upon the initial conditions. One possibility,

considered in [1, 2], is that θ̇ is initially zero, with θ taking an arbitrary initial value.

Then the equation of motion (3.5) is heavily overdamped, and θ remains approximately

constant until H(t) decreases to the point where H ∼ M2/f . Thus the PNGB behaves

approximately like dark energy. The coincidence problem is not solved unless one finds a

rationale for why M2/f , a ratio of two seemingly independent scales, is roughly equal to

the Hubble rate today. Even then one also needs to explain why the initial value of θ̇ is

much less than H.

Another possibility is that both θ̇ and θ have generic initial values during some epoch

where the PNGB dominates the expansion. Then for M/f ≪ 1 the cosmological solution

is an oscillatory perturbation of the NGB solution (2.8). The global charge of the vacuum

Q ∝ a3θ̇ is no longer conserved; in fact it increases with time like

Q̇

Q
∼ t . (3.6)

This case is more generic than the first one, but does not provide an explanation of dark

energy.
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4. From generic PNGBs to Slinky

The most general effective action for the PNGB invariant under the shift (3.2) is

∫

d4x
√
−g

[

1

2
F (cos θ)P (X) − V (cos θ) + Lm

]

, (4.1)

where X = gµν∂µθ∂νθ, F and V are arbitrary functions, and P is an arbitrary polynomial.

The matter lagrangian L could contain both derivative couplings to θ and couplings to

functions of cos θ. If there are further explicit breakings of the global symmetry, the action

may also contain a nonperiodic dependence on θ.

The Slinky model of quintessential inflation introduced in [6]-[8] is a PNGB quintessence

model of the general class just described, but with some special features. It does not require

tuned initial conditions; in particular the initial value of θ̇ is of order H. It is the simplest

model with a periodic equation of state parameter for quintessence. The quintessence en-

ergy density dominates the Friedmann equation during an earlier epoch as well as during

the present epoch, causing primordial inflation as well as present-day acceleration. In order

for this to happen, both the potential and the kinetic energy must be proportional to the

square of the Hubble parameter times periodic functions:

V ∝ H2 , θ̇2 ∝ H2 . (4.2)

The first relation implies that these models will have a PNGB mass that decreases with

time.

The explicit form of the Slinky is easily derived. We begin with the general action

(4.1) and make the simplest nontrivial choice P (X) = X. Without loss of generality, we

will take θ(t) = 1 today. For quintessence the equation of state parameter w(t) should be

close to −1 today; for simplicity we will take it to be exactly −1. Since

1 + w(t) = F (cos θ) θ̇2 . (4.3)

This means that F (cos θ) θ̇2 → 0 now. The simplest nonvanishing function that does this

is

F =
3k2

b2
(1 − cos θ) , (4.4)

where b is a dimensionless constant given by

b =

√

3

4π

MPlanck

f
. (4.5)

The explicit breaking represented by the cosine term in (4.4) does not have any tun-

able small parameter associated with it. Thus one might worry that this breaking is not

small. However since this breaking occurs in the kinetic function, it generates global charge

nonconserving processes that are suppressed by powers of momenta divided by k. Thus for

dynamics well below the Planck scale this breaking is indeed small.
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The PNGB potential V (θ) must vanish when we turn off the explicit breaking. Of

course this requirement is a tuning, reflecting the fact that quintessence models do not

explain why the θ-independent cosmological constant vanishes. In this limit we are kination

dominated, with w(t) = −cos θ = 1. Thus the simplest form for the potential is

V ∝ (1 + cos θ)H2(θ) . (4.6)

We need to solve three equations of motion, beginning with the Friedmann equation:

H2 =
2

3k2
ρθ . (4.7)

The second equation is the scalar EOM:

0 = θ̈ + 3Hθ̇ +
1

2

F ′

F
θ̇2 +

V ′

F
, (4.8)

where a prime denotes a derivative with respect to θ. The third equation is the continuity

equation:

ρ̇θ = −3(1 + w)Hρθ , (4.9)

where w(θ) is the equation of state parameter for quintessence.

Plugging in (4.4) and (4.6) we get a solution with

H = H0 e
3
2b

(θ−sin θ) (4.10)

where H0 is the Hubble parameter today.

Now we have enough information to specify F and V completely:

F (θ) =
6k2

b2
(1 − cos θ) ,

V (θ) =
1

2
ρ0(1 + cos θ) exp

[

3

b
(θ − sin θ)

]

, (4.11)

where ρ0 = 3k2H2
0/2 is the analog of M4 in the standard PNGB quintessence model

discussed earlier. Note that the scalar potential has an additional explicit breaking that

does not respect the periodicity (3.2). This breaking is small during any epoch such that

H/k ≪ 1.

Slinky is a PNGB quintessence model characterized by a periodic equation of state

w = −cos θ. The effective mass of the PNGB is tied to the expansion rate, and therefore

decreases over time. These two features combined allow the same PNGB to serve the

role both of the inflaton in the early universe and the quintessence field that drives the

accelerated expansion in the current epoch.

The number of inflationary epochs that have occurred is controlled by the dimensionless

parameter b; larger values of b mean more inflationary periods. Most values of b are ruled

out by the requirement that the universe had at most a tiny inflationary component during

BBN [9]. Note from (4.4) that b <∼ 0.49 implies that f > MPlanck. The Slinky models
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Figure 1: The cosmological history of the simplest Slinky model. The x-axis is the logarithm base

10 of the scale factor. Shown are energy densities of radiation (green), dark matter (orange), baryons

(blue) and dark energy (red), as a fraction of the critical density.

considered in [7] have values in the range 0.09 < b < 0.4. This does not necessarily mean

that these models require trans-Planckian vevs; for example, if we replace the single PNGB

by N identical ones, then b is effectively rescaled as b→ b/
√
N . Thus small values for b do

not indicate a scenario that is technically out of control.

The nonstandard cosmological history of this model is depicted in Figure 1. The energy

densities of radiation, dark matter, baryons and dark energy, computed as a fraction of

the critical density, are plotted as function of the logarithm of the scale factor. We have

chosen to start the cosmological evolution at a scale factor of 10−42, but this choice is not

essential. We have assumed that the Friedmann equation is initially dominated by the

PNGB. For simplicity we set the initial radiation density to zero, so all radiation arises

from PNGB decays, as explained in the next section.

The radiation temperature as a function of the scale factor is shown in Figure 2. During

the initial inflation the temperature is roughly constant at around 1016 GeV, increasing

mildly towards the end of this first inflationary epoch. This behavior is in contrast to

standard primordial inflation, where the temperature first decreases very rapidly, then

increases very rapidly (reheating). The new behavior is due to the time-varying equation

of state.

5. Couplings to matter

The allowed couplings of θ to matter can be divided into two classes:
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Figure 2: The cosmological history of the simplest Slinky model. The x-axis is the logarithm base

10 of the scale factor. Shown are energy densities of radiation (green), dark matter (orange), baryons

(blue) and dark energy (red), as a fraction of the critical density.

1. Couplings of functions of cos θ to matter. These couplings explicitly break the global

U(1) symmetry. It is technically natural to take the dimensionless coupling constants

for all such couplings to be small.

2. Derivative couplings of θ to matter. Some of these couplings respect the full global

U(1) symmetry, so there is no symmetry argument for tuning their dimensionless

coupling constants to be small; indeed we will assume that they are of order one.

However almost all such couplings are higher dimension operators suppressed by

powers of momenta over powers of MPlanck.

Thus for Slinky, as well as for more generic PNGB quintessence models, it is a good

approximation to only include couplings to matter of the form

λij g
µν∂µθ ψ̄iγνψj , (5.1)

where λij is dimensionless. A caveat is that the Slinky potential (4.6) has an additional

explicit breaking of the global U(1) symmetry, that we are assuming has no analog in the

matter couplings.

Couplings of the form (5.1) allow the θ field to decay into ordinary matter. This

process can be modeled, albeit roughly [10], as an additional friction term in the θ equation

of motion:

0 = θ̈ + 3Hθ̇ + Γθ̇ +
1

2

F ′

F
θ̇2 +

V ′

F
. (5.2)

– 8 –



Here Γ is the decay width, which for decays into pairs of fermions can be generically written

Γ = kmmeff(t) , (5.3)

where km ∼ λij are dimensionless couplings which we will take to be approximately con-

stant with magnitudes in the range .1 to .01; meff ∝ H is the time varying mass of the

PNGB, obtained by expanding the potential (4.6).

This process converts quintessence vacuum energy into matter and radiation. Thus

Slinky produces the following nonstandard cosmological history:

• During a primordial epoch, w is close to -1 and inflation occurs.

• Eventually w increases towards +1, and the radiation produced from θ decays, which

is now diluting less rapidly than the quintessence energy, comes to dominate the

expansion.

• The process repeats. In the original Slinky model [6], which we will use from now

on, the second radiation dominated epoch overlaps with the time of Big Bang Nucle-

osynthesis.

• Well before BBN time, meff becomes so small that the PNGB decays to matter effec-

tively turn themselves off, due to kinematic suppression. PNGB decays to photons

continue, but these are loop-suppressed and so do not give large entropy production.

• Right now we are entering the third inflationary phase.

From the arguments given above, the only couplings in this model whose values affect

the cosmological evolutions are b and the λij . The value of b is coarsely adjusted such that

we ensure that BBN time is radiation dominated and that w is close to −1 today. The

dominant λij couplings are adjusted such that the radiation and matter fractions Ωr/ΩΛ

and ΩDM/ΩΛ come out to their measured values today. For simplicity we assume that

all of the dark matter is produced thermally, as e.g. in standard WIMP scenarios. The

remaining matter couplings (for the moment) remain free.

We now see more clearly why the the temperature history represented in Figures 1 and

2 is so nonstandard. The coupling between matter and the PNGB field force them track

each other, giving significant entropy production even after the first period of inflation .

This entropy production turns off well before BBN time due to the kinematic suppression

of PNGB decays.

6. Baryogenesis

If baryon number B and lepton number L are exactly conserved, then B or L violating

decays of the PNGB simply do not occur. This can be seen from the coupling (5.1), which

with integration by parts vanishes for any conserved current jµ = ψ̄γµψ.
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However we certainly do not expect the global symmetries B and L to be respected by

unification scale physics. We therefore introduce all possible B and L violating dimension

six operators:

ψiψjψkψl

Λ2
ijkl

(6.1)

suppressed by some superheavy scales Λijkl. Suppressing flavor labels, this implies that

the B or L violating decay width of the PNGB can be written

Γ = λ2 m
5
eff

Λ4
. (6.2)

Thus PNGB evolution and decay during the first inflationary epoch will produce a net

B and L asymmetry, including a B − L asymmetry that will survive the B + L washout

by sphalerons during the electroweak phase transition.

At sufficiently high temperatures the B or L violating processes will be in thermal

equilibrium. The equilibrium condition is [4]

Γ ≫ θ̈

θ̇
=

3

2
(1 − cos θ)HPNGB , (6.3)

where HPNGB denotes the Hubble rate that would result from the PNGB alone, given in

equation (4.10). Figure (3) shows an estimate of the value of the scale factor at which B

or L violating processes decouple, assuming Λ = 1015 GeV. The corresponding decoupling

temperature is about 8 × 1015 GeV.

Once we are out of equilibrium the baryon asymmetry continues to grow via PNGB

decays. The net baryon number density as a function of time can be written as [4]

ṅB = λ
m5

eff

Λ4

12k2

b2
θ̇ sin θ . (6.4)

It is useful to express the baryon number density as a function of θ, i.e.

n′B = λ
m5

eff

Λ4

12k2

b2
sin θ . (6.5)

To calculate the baryon asymmetry produced, we have to include the expansion of the

universe. This can be easily done by replacing all the volume factors in the equations above

by the corresponding comoving volumes, proportional to a3,

d

dθ
(a3nB) = λ a3 m

5
eff

Λ4

12k2

b2
sin θ . (6.6)

To obtain the net baryon number density we have to numerically integrate this expression

from the decoupling temperature to θf , the temperature where baryon production from

PNGB decays is cut off kinematically by the decrease in meff . For decays to baryons θf

corresponds to a scale factor of approximately 10−27, when meff ∼ H(θ) ≃ 1 GeV.
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Figure 3: The ratio of the relative rates of B or L violating processes versus the cosmological

evolution of the PNGB field, as a function of the logarithm base 10 of the scale factor. We have

taken Λ = 1015 GeV. The ratio is shown in red; B or L violation goes out of equilibrium below the

blue line.

From the baryon density we want to extract the baryon to photon ratio, η. As usual

the photon number density is given by

nγ =
2ζ(3)

π2
T 3 . (6.7)

Contrary to the standard scenarios [11, 12], where the baryon (more precisely, B−L) to

photon ratio does not change after baryogenesis, in our model there is significant entropy

production due to the coupling of the PNGB field to radiation. The net effect of such

a production will be to dilute any baryon to photon ratio produced before BBN, where

entropy production stops. Therefore η can still be calculated at θf , but we have to include

the extra dilution factor γ, given by

γ =
Sθf

SθBBN

. (6.8)

Here S = g∗ a
3 T 3, with g∗ the effective number of relativistic degrees of freedom. Alter-

natively, we can calculate η directly at BBN time.

The only input parameters left to adjust in our simple model are the scale Λ and the

dimensionless coupling λ. We consider two well-motivated scenarios. In the first scenario,

Λ ≃ 1015 GeV, just about saturating the generic lower bounds from the nonobservation of

proton decay [5]. We estimate the baryon to photon ratio η in this case to be

η ≃ 4λ × 10−10 . (6.9)
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This gives the observed baryon asymmetry for λ ≃ 1.

The second scenario has Λ ≃ 1011 GeV, as might be appropriate in a leptogenesis

model. Here we estimate

η ≃ 5λ × 10−8 , (6.10)

which gives the observed baryon asymmetry for λ ≃ 0.01.

The cosmological history of η is unlike that of previously discussed models of quintessen-

tial baryogenesis [13]-[20]. At early times the PNGB effective mass is large, and the baryon

number violating processes are least suppressed. A baryon or lepton asymmetry is pro-

duced in thermal equilibrium, but this contribution is negligible compared to the asymme-

try produced later by PNGB decays. This is basically because the PNGB decay process is

enhanced by f2, the square of the Planckian scalar vev, as seen in (6.4). The net baryon

production turns itself off kinematically as meff decreases. The baryon to photon ratio

drops dramatically during the subsequent second inflation era, where there is further large

entropy production. The fact that the baryon to photon number density observed today is

very small is thus due entirely to the existence of a second inflation era; B or L violation

was only mildly suppressed at the time that most of the net baryon or lepton excess was

created.

7. Conclusions

We have shown that a single noncanonical PNGB could be responsible for both primordial

inflation and the present day accelerated expansion, while simultaneously generating the

observed baryon excess. The baryon asymmetry is generated after the first inflationary

period, from PNGB decays via dimension six operators that violate B and/or L. The ratio

of baryon to photon number densities is greatly diluted later on, via entropy production

from B and L conserving PNGB decays. The baryon energy density is completely negligible

expect during two eras: the present day and an era around the time of the electroweak

phase transition.

While economical, technically natural, and consistent with current data, our model has

some theoretical shortcomings. It explains dark energy but does not solve the cosmological

constant problem. There is also no first principles explanation for why the PNGB potential

scales like the square of the Hubble rate. Resolving these shortcomings presumably involves

an ultraviolet completion of the PNGB effective theory into a more fundamental framework.

One of the distinguishing features of this model, is that it predicts substantial entropy

production in the era between the electroweak phase transition and BBN. If dark matter is

predominately composed of thermally produced WIMPs, this prediction can be tested by

combining collider data with signals from direct and indirect WIMP searches [8], [21]-[25].

Because of the entropy production after the second inflation era (but before BBN),

any pre-existing baryon asymmetry is much diluted. This requires that the operators

responsible for B violation be not too much suppressed, forcing us close to the current

experimental bounds for proton decay. Thus another prediction is that proton decay will

be observed in one of the future proposed experiments [26]-[29].
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Future dark energy probes will pin down the equation of state of dark energy with

much greater precision. In our simple model we artificially set w = 1 exactly at redshift

z = 0; more relevant is that w varies by about 2% as redshift is varied between 0 and 2.

This variation is comparable to the one-sigma projected combined errors after the Stage

IV dark energy probes [30].

Models of the type discussed here predict running of the spectral indices of the Cosmic

Microwave Background (CMB) [31]. These effects may be large enough to extract from

observations of the PLANCK satellite [32]. The smoking gun of a predictive model of

quintessential inflation is that these CMB effects, a result of inflation, are directly related

to the detailed equation of state of dark energy.
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